Back to All Events

WEDNESDAY lunch: Aliaksandr Hubin

The lunch starts at 12:00, and the talk will start around 12:20.

NB: Wednesday BigInsight Lunches are open to staff and students from any of the BigInsight partners, including UiO, but not to others.

Speaker: Aliaksandr Hubin, Research Scientist, NR

Location: 8. floor Niels Henrik Abel’s building.

Title: Combining Model and Parameter Uncertainty in Bayesian Neural Networks

Abstract: Bayesian neural networks (BNNs) have recently regained a significant amount of attention in the deep learning community due to the development of scalable approximate Bayesian inference techniques. There are several advantages of using Bayesian approach: Parameter and prediction uncertainty become easily available, facilitating rigid statistical analysis. Furthermore, prior knowledge can be incorporated. However so far there have been no scalable techniques capable of combining both model (structural) and parameter uncertainty. In this paper we introduce the concept of model uncertainty in BNNs and hence make inference in the joint space of models and parameters. Moreover, we suggest an adaptation of a scalable variational inference approach with reparametrization of marginal inclusion probabilities to incorporate the model space constraints. Finally, we show that incorporating model uncertainty via Bayesian model averaging and Bayesian model selection allows to drastically sparsify the structure of BNNs without significant loss of predictive power.